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EIGENSOLUTION ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD

WITH NON-UNIFORM GRIDS, PART I: ONE SPACE DIMENSION

FANG Q. HU�
AND HAROLD L. ATKINSy

Abstract. We present a detailed study of spatially propagating waves in a discontinuous Galerkin

scheme applied to a system of linear hyperbolic equations. We start with an eigensolution analysis of the

semi-discrete system in one space dimension with uniform grids. It is found that, for any given order of

the basis functions, there are at most two spatially propagating numerical wave modes for each physical

wave of the Partial Di�erential Equations (PDE). One of the modes can accurately represent the physical

wave of the PDE and the other is spurious. The directions of propagation of these two numerical modes

are opposite, and, in most practical cases, the spurious mode has a large damping rate. Furthermore,

when an exact characteristics split �ux formula is used, the spurious mode becomes non-existent. For the

physically accurate mode, it is shown analytically that the numerical dispersion relation is accurate to order

2p+ 2 where p is the highest order of the basis polynomials. The results of eigensolution analysis are then

utilized to study the e�ects of a grid discontinuity, caused by an abrupt change in grid size, on the numerical

solutions at either side of the interface. It is shown that, due to �mode decoupling�, numerical re�ections at

grid discontinuity, when they occur, are always in the form of the spurious non-physical mode. Closed form

numerical re�ection and transmission coe�cients are given and analyzed. Numerical examples that illustrate

the analytical �ndings of the paper are also presented.

Key words. �nite element methods, unstructured grids, wave propagation, acoustics

Subject classi�cation. Numerical Analysis

1. Introduction. Discontinuous Galerkin Method (DGM) is a �nite element method that allows a

discontinuity of the numerical solution at element interfaces. It has been developed very rapidly in the past

few years and has been applied to many �elds of practical importance, such as computational �uid dynamics,

aeroacoustics, and electromagnetics (e.g., [2,3,7,22]). A recent review of DGM can be found in [5] with an

extensive list of references.

It is well known that for a discontinuous Galerkin scheme employing basis polynomials up to order p, the

rate of convergence is hp+1=2 in general and hp+1 in some special cases ([13,12,17,19]), where h is a measure

for the size of elements. Occurrences of super-convergence in DGM has been reported in the literature and

some are reviewed in [5] . For examples, Biswas, Devine and Flaherty [4] and Adjerid, Ai�a and Flaherty [1]

showed super-convergence on Gauss-Radau points. Lowrie, Roe and van Leer reported numerical results of

order 2p + 1 convergence in [14]. Most recently, Cockburn, Luskin, Shu and S�uli [6] showed the possibility

of obtaining 2p+ 1 convergence by a suitable post-processing of the numerical solution.

In contrast to the many studies on convergence rates, there have been relatively fewer works on the

wave propagation properties of DGM. In [12], Johnson and Pitk�aranta included a Fourier analysis of DGM

for the case of p = 1 and showed that the eigenvalue of the �ampli�cation matrix� (Ê(�)) is accurate to

order 4 (local error). In [15], Lowrie performed a Fourier analysis of a space-time discontinuous Galerkin
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scheme, up to p = 3, for a one-dimensional scalar advection equation and showed that the eigenvalue is

accurate to order 2p+ 2 (locally) which results in a global order 2p + 1 decay of the evolution component

of the numerical error. In [9], Hu, Hussaini and Rasetarinera studied numerical dissipation and dispersion

errors of DGM for one- and two-dimensional wave equations. They also analyzed anisotropic errors of wave

propagation in triangular and quadrilateral elements. In a recent work by Rasetarinera, Hussaini and Hu

[18], it was further demonstrated numerically that dissipation errors of DGM decay at order 2p+2 (locally)

when the exact characteristics splitting �ux formula is used. Another study of Fourier analysis was carried

out in [20] by Sherwin which gave exact expressions of the numerical frequency analytically up to p = 3

and numerically for p = 10. It is also interesting to note here some related works in continuous Galerkin

methods. For instance, a case of super-convergence in phase error in continuous Galerkin methods has been

shown, numerically, by Thompson and Pinsky[21] and, theoretically, by Ihlenburg and Babuska[11]. It was

found that when basis polynomials of order p are used the phase error converges (locally) at h2p+1[11]. We

point out that this is one order less than that for DGM as we will show in this paper.

The present work has been motivated primarily by the need to understand wave propagation in DGM

with non-uniform elements (grids). As a �rst step toward such a goal, we study wave propagation through

an interface with an abrupt change in grid size in one space dimension. We will �rst carry out an analysis on

spatially propagating waves, referred to as the eigensolutions, of the semi-discrete system in uniform grids.

Then the results of such an analysis will be applied to study wave re�ection and transmission by expressing

the numerical solution on either side of the interface in eigensolutions. The re�ection and transmission

coe�cients are then found by deriving proper coupling conditions at the interface. As we will see, numerical

re�ection at a grid discontinuity is dependent on the �ux formula employed in the implementation of DGM.

Two commonly used �ux schemes are considered in this paper, namely, the characteristics-based �ux and

Lax-Friedrich �ux formulas. These two schemes will be analyzed in a uni�ed way by introducing an upwind

factor.

We point out that a major di�erence between the present and previous works in wave analysis for

DGM is that in the present work we study spatial waves where the temporal frequency is speci�ed and

the corresponding wavenumber is sought as eigenvalues, while in the previous studies the wavenumber was

speci�ed and the frequency was found as eigenvalues. The present approach is necessary because, with

an introduction of grid discontinuity, numerical wave number is not constant across the interface of a grid

change. The use of spatial waves also turn out to be advantageous in that the eigenvalue problem is greatly

simpli�ed and reduced. As a result, the numerical dispersion relation is governed by a quadratic equation

that can be solved analytically for any order of the basis polynomials. Speci�cally, in a uniform grid, it

is found that there are at most two spatially propagating numerical wave modes for each physical wave of

the PDE. One of the numerical wave modes can accurately approximate the physical wave and the other

is a highly irregular spurious mode. They will be referred to as the physical and spurious numerical waves

respectively in this paper. For the physically accurate mode, it will be shown that the numerical dispersion

relation is accurate to (kh)2p+2 locally where k is the wave number, which con�rms those previous works

mentioned earlier[12][14][18]. In fact, we will show that dispersion error is of order 2p+3 while the dissipation

error is of order 2p+2. For the spurious mode, it is found that it propagates in the opposite direction of the

physical mode and becomes non-existent when the exact characteristics-based �ux formula is used. Following

the analysis of waves in uniform grids, the e�ect of a grid change on either side of the interface is studied. It

is found that waves associated with di�erent physical eigenvectors are decoupled and numerical re�ections

are always in the form of the spurious numerical wave and are highly damped.
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The rest of the paper is organized as follows. In section 2, we describe the discretization process and the

associated �ux formulas. In section 3, the eigenvalue problem for spatially propagating waves in a uniform

grid is formulated. In section 4, numerical dispersion relation and its accuracy are analyzed and discussed.

Wave propagation through a grid discontinuity is studied in section 5. And numerical examples are presented

in section 6. Section 7 has our conclusions.

2. Formulations of discretization and numerical �ux. Consider the discontinuous Galerkin method

for a system of hyperbolic equations in one-dimensional space:

@u

@t
+
@f(u)

@x
= 0(2.1)

where u is a vector of dimension N and f is the �ux vector. We will only consider linear cases in our analysis

and assume that

f(u) = Au(2.2)

where A is a constant N � N matrix. We assume that A has N real eigenvalues, denoted by aj for

j = 1; 2; :::; N and the eigenvectors of A, denoted by ej , form a complete basis in N -dimensional space.

Throughout this paper, unless speci�ed otherwise, lower case bold face letters will stand for column vectors

and upper case bold face letters stand for matrices.

In a discretization of (2.1) using the discontinuous Galerkin method, the spatial domain is partitioned

into elements, En =[xn�1; xn], where n is the element index. In each element, the numerical solution, denoted

by unh(x; t), is expressed as

unh(x; t) =

pX
`=0

cn` (t)p
n
` (x);(2.3)

where fpn` (x); ` = 0; 1; :::; pg is the set of basis polynomials for element En. Here p, without superscript or

subscript, denotes the highest order of polynomials in the chosen basis and cn` (t) is the expansion coe�cient.

In a weak formulation for (2.1), we require that

Z xn

xn�1

�
@unh
@t

+
@f

@x

�
pn`0(x)dx = 0(2.4)

for `0 = 0; 1; :::; p. By a use of integration by parts, the above is re-written as follows,

Z xn

xn�1

@unh
@t

pn`0(x)dx +
�
fR � pn`0(x)

�xn
xn�1

�
Z xn

xn�1

f
@pn`0

@x
dx = 0:(2.5)

At any interface between two elements, i.e., the end points xn�1 and xn, the �ux vector fR is not

uniquely determined and a �ux formula has to be supplied to complete the discretization process. Various

kinds of �ux formulas have been proposed and used in the literature. In this paper, we will consider two

commonly used �ux formulas. They are speci�ed below and will be referred to as the characteristics-based

�ux formula and Lax-Friedrich �ux formula respectively.

The characteristics-based �ux formula is of the form
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fR(uL;uR) =
1

2
[f(uL) + f(uR)� �jAj(uR � uL)]; � � 0(2.6)

where uL and uR are the values of u at the interface calculated using expansion coe�cients of the elements at

the left and right of that interface respectively. (In DGM uL and uR are not required to be the same.) Here

� is a scalar parameter. The value of � is usually unity in practice which makes (2.6) an exact characteristics

splitting (the exact Roe solver). On the other hand, (2.6) will result in a symmetric averaged scheme when

� = 0. Here, we will keep � as a parameter so that our analysis can be useful for a wide range of cases. For

convenience, (2.6) will be written as

fR(uL;uR) = ALuL +ARuR(2.7)

where

AL =
1

2
[A+ �jAj]; AR =

1

2
[A� �jAj]:(2.8)

The Lax-Friedrich �ux formula is of the form

fR(uL;uR) =
1

2
[f(uL) + f(uR)� �jajmax(uR � uL)] � � 0(2.9)

where jajmax is the maximum (absolute value) of the eigenvalues of A. This can again be written in the

form of (2.7) with

AL =
1

2
[A+ �jajmaxI]; AR =

1

2
[A� �jajmaxI]:(2.10)

Using expression (2.7) for both cases, the semi-discrete equation (2.5) can now be written asZ xn

xn�1

@unh
@t

pn`0(x)dx +
�
ALu

n
h(xn; t) +ARu

n+1
h (xn; t)

�
pn`0(xn)

� �ALu
n�1
h (xn�1; t) +ARu

n
h(xn�1; t)

�
pn`0(xn�1)�

Z xn

xn�1

Aunh
@pn`0

@x
dx = 0(2.11)

for `0 = 0; 1; :::; p.

Together with (2.3), equation (2.11) yields a system of time evolution equations for the expansion

coe�cients for each element. This system is usually solved by some time integration scheme such as the

Runge-Kutta schemes ([2], [7]).
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3. Spatially propagating waves in uniform grids.

3.1. Use of local variables. Introducing a local coordinate � for each element, we let

� =
2

�xn
(x� �xn) where �xn = xn � xn�1 and �xn =

xn�1 + xn
2

:(3.1)

In addition, the basis functions will be taken to be the same for all the elements when expressed in the local

coordinate �, i.e., we assume

pn` (x) = P`(�);

where fP`(�); ` = 0; 1; :::; pg is a chosen set of basis functions, such as the Legendre polynomials, or the set

of f1; �; �2; :::�pg. The results of our analysis are independent of the speci�c choice on the basis functions.

We look for wave-like solutions supported by (2.11). By assuming a periodicity in time with a frequency

!, we let

unh(�; t) = e�i!tûnh(�) where ûnh(�) =

pX
`=0

ĉn` P`(�); and i =
p�1(3.2)

The expansion coe�cients ĉn` are now independent of t. Substituting the above into (2.11), we get

� i!�xn
2

Z 1

�1

ûnh(�) � P`0(�)d� +
�
ALû

n
h(1) +ARû

n+1
h (�1)

�
P`0(1)

� �ALû
n�1
h (1) +ARû

n
h(�1)

�
P`0(�1)�

Z 1

�1

Aûnh(�)
@P`0

@�
d� = 0(3.3)

for `0 = 0; 1; :::; p.

3.2. Uniform grid and the eigenvalue problem. We now consider the case where elements are

uniform in length, i.e., �xn � h. After substituting (2.3) into (3.3), we look for solutions with expansion

coe�cients of the form

ĉn` = �n~c`(3.4)

where � is an undetermined complex number and ~c` is a vector independent of the element index n. It is

easy to see that, if we express � as

� = eikhh;(3.5)

then, kh can be interpreted as the wave number of the numerical solution. Here kh will be referred to as the

numerical wave number.

For convenience of discussion, we de�ne a column vector that contains all the expansion coe�cients

~x =

2
66664

~c0

~c1

:::

~cp

3
77775(3.6)
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and matrices

Q = fq`0`g; where q`0` =

Z 1

�1

P`(�)P`0(�)d�;(3.7)

Q0 = fq0`0`g; where q0`0` =

Z 1

�1

P`(�)
@P`0

@�
d�;(3.8)

B(a;b) = fb`0`g; where b`0` = P`0(a)P`(b)(3.9)

where `0; ` = 0; 1; :::; p. Then, equation (3.3) can be re-written compactly as

� i!h

2
(Q
 I)~x+ (B(1;1) 
AL)~x � (B(�1;�1) 
AR)~x� (Q0 
A)~x

+�(B(1;�1) 
AR)~x� 1

�
(B(�1;1) 
AL)~x = 0(3.10)

where
 denotes the Kronecker product (The de�nition and relevant properties of 
 can be found in appendix

A1). For a given frequency !, equation (3.10) forms an eigenvalue problem with � being the eigenvalue and

~x the eigenvector.

Next, we show that (3.10) can be equivalently separated into N independent eigenvalue problems, where

each sub-problem corresponds to one of the physical wave modes of the PDE. Here each pair of the eigenvalue

and eigenvector faj ; ejg of the PDE will be referred to as a wave mode of the PDE (2.1) and aj is the wave

speed of that mode. Since we are interested in spatially propagating waves, we assume aj 6= 0.

We �rst express ~x given in (3.6) in terms of eigenvectors of the PDE as follows,

~x =

2
66664

~c0

~c1

:::

~cp

3
77775 =

2
66664
PN

j=1 y0jejPN
j=1 y1jej

:::PN
j=1 ypjej

3
77775 =

NX
j=1

2
66664

y0j

y1j

:::

ypj

3
77775
 ej �

NX
j=1

yj 
 ej(3.11)

where yj is a column vector of dimension p+ 1. By substituting (3.11) into (3.10) and using a property of

the Kronecker product (equation (7.2) of Appendix A1), we get

NX
j=1

�
� i!h

2
(Qyj)
 ej + (B(1;1)yj)
ALej � (B(�1;�1)yj)
ARej � (Q0yj)
Aej

+�(B(1;�1)yj)
ARej � 1

�
(B(�1;1)yj)
ALej

�
= 0:(3.12)

Furthermore, for AL and AR given in (2.8) and (2.10), we have

ALej =
1 + ��j

2
ajej ; ARej =

1� ��j
2

ajej;(3.13)
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where

�j =
jaj j
aj

(3.14)

for the characteristics-based �ux de�ned in (2.8) and

�j =
jajmax

aj
(3.15)

for the Lax-Friedrich �ux de�ned in (2.10). Thus the two types of �ux formulas can be treated in a uni�ed

way by using (3.13). For convenience of discussion, we de�ne

j = ��j :(3.16)

and j will be referred to as the upwind factor of the scheme for the jth wave mode of the PDE. We note

that, for both cases given in (3.14) and (3.15), jj j = 1 leads to the exact characteristics splitting. For

jj j > 1, the eigenvalues of AL and AR are all positive and negative, respectively. Note also that for the

Lax-Friedrich �ux formula applied to a system of equations in which the jaj j varies widely, jj j will be large
for the slowest wave modes; however, the wavenumber !h=aj will also be proportionally large for any given

!.

Equation (3.12) can now be expressed as

NX
j=1

�
� i!h

2
Qyj +

1 + j
2

ajB(1;1)yj � 1� j
2

ajB(�1;�1)yj � ajQ
0yj

+�
1� j

2
ajB(1;�1)yj � 1

�

1 + j
2

ajB(�1;1)yj

�

 ej = 0:(3.17)

Due to linear independency of ej 's, it is easy to see that (3.17) yields N independent sub-eigenvalue

problems,

�
�

i!h

aj
Q+ (1 + j)B(1;1) � (1� j)B(�1;�1) � 2Q0 + �(1� j)B(1;�1) �

1

�
(1 + j)B(�1;1)

i
yj = 0(3.18)

for j = 1; 2; :::; N , in which yj is the eigenvector and � is the eigenvalue.

We observe that, by solving the eigenvalue problem posed in (3.18), we will obtain � as a function of

the non-dimensional frequency !h
aj

(or wavenumber) and the upwind factor j , i.e.,

� = F (
!h

aj
; j):(3.19)

Since � is directly related to the numerical wave number kh by (3.5), equation (3.19) is the numerical

dispersion relation of the scheme. It is an intrinsic property of the discretization.

In addition, the non-trivial solution of (3.18) forms the eigenfunction of the numerical mode. Speci�cally,

let the eigenvectors of (3.18) be denoted by y = fv`g, then the eigenfunctions will be of the form

7



unh(�; t) = e�i!tûnh(�)ej ;(3.20)

where

ûnh(�) = einkhhf(�;
!h

aj
; j); and f(�;

!h

aj
; j) =

pX
`=0

v`P`(�)(3.21)

For convenience, the eigenfunctions will be normalized such that

f(1;
!h

aj
; j) = 1:(3.22)

4. Numerical dispersion relation.

4.1. Determinant of equation (3.18). Wave propagation properties of the numerical scheme are

encoded in the numerical dispersion relation (3.19). For convenience of discussion, the subscript j will be

dropped in this section. We de�ne

K =
!h

a
and Kh = khh;

where K is the non-dimensional exact wave number of the PDE and Kh is the non-dimensional numerical

wave number as given in (3.5). Kh is related to � of (3.18) by

� = eiKh :(4.1)

By letting the determinant of the coe�cient matrix for yj in (3.18) be zero, we get an algebraic equation

for � for any given value of K. We have computed the determinant of (3.18) symbolically using the computer

algebra system MAPLE [16]. It is found that the determinant, after some normalization, can be written in

the following form:

(1� )[G(iK)��H(iK)] + (�1)p+1(1 + )[G(�iK)
1

�
�H(�iK)] = 0(4.2)

where G(x) and H(x) are polynomials of degree p and p+ 1, respectively, with real coe�cients. The exact

expressions for G and H are given in appendix A2.

Before presenting the numerical and analytical results of (4.2), we make some general remarks:

1. We observe that, due to the fact that the rank of B matrices in (3.18) is unity (see equation (3.9)),

equation (4.2) is quadratic in �. Consequently, there will be at most two distinct solutions for � in (4.2).

Furthermore, when  = �1 (exact characteristics splitting of the �ux), equation (4.2) becomes linear in �

and there will be only one solution for �.

2. In previous works in the literature, the spatial wave number Kh, thus � in (4.2), is speci�ed and K is

to be solved from (4.2). This, of course, will result in solving a polynomial of degree p+ 1 which is di�cult

to do analytically for p > 3.

3. If � = �0 is a solution to (4.2) for  = 0, then � = 1
�0

is a solution for  = �0. (This can be shown

simply by taking a complex conjugate of (4.2).) Thus, it is su�cient to consider theoretically only the cases

with  > 0 in (4.2), i.e., right-going waves, for dissipation and dispersion errors.
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4.2. Numerical results of the eigensolutions. We �rst present numerical results of (4.2). Its

analytical properties will be presented in section 4.3. As we have seen in previous discussions, when jj 6= 1,

there are two roots for �. Each root represents a numerical wave mode whose wave number is found by

(4.1) and whose mode shape (eigenfunctions) found by (3.21). As we will see, one of the numerical modes

can faithfully represent the physical wave and the other mode is spurious or non-physical. These two modes

behave very di�erently and it is easy to distinguish the physical mode from the non-physical mode. When

jj = 1 (exact characteristics �ux), of course, there will be only one root and the spurious mode will not be

present.

We will use a case with  = 0:5 as an example to demonstrate numerical results. For a given value of

exact wave number K, we solve equation (4.2) and obtain two values of � which are then converted into

numerical wave numbers Kh according to (4.1). For the physical mode, the numerical wave number Kh as

a function of K is plotted in Figure 4.1(a) (real part) and 4.1(b) (imaginary part), for cases p = 1; 2; 3; 4.

The diagonal line in Figure 4.1(a) is the exact relation, i.e., when the numerical wave number is equal to

the actual physical wave number. It is seen that, for a given value of p, the real part of the numerical

wave number, Re(Kh), follows the exact line closely for a range of K values. This range will be termed

resolved wave number space. Clearly, the higher the order of the basis functions, the larger the resolved

space. Figure 4.1(b) shows the imaginary part of the numerical wave number, Im(Kh). Since the wave is

right-traveling for the present case ( > 0), the positive imaginary part represents numerical damping as the

wave propagates in space. We note that the damping is not signi�cant for wave numbers within the resolved

wave number space in each scheme. The exact boundary of resolved range is, of course, somewhat arbitrary

and depends on the accuracy criteria imposed. This issue will be closely examined in section 5.2. In general,

the dissipation error places a higher requirement on the resolution of the scheme than the dispersion error

in DGM.

For the spurious mode, the relation of Kh v.s. K is plotted in Figure 4.2. For the real part of Kh shown

in Figure 4.2(a), the curve starts at 0 for p odd and starts at � for p even. The group velocity of these waves

(slope of Re(Kh) v.s. K) is negative, indicating that the spurious waves are left-traveling, in the opposite

direction of the actual physical wave. The imaginary part of Kh is also negative, indicating again that the

wave is left-traveling and damped. The damping rates for the spurious modes in Figure 4.2(b) are quite

large for the cases shown. This means that the spurious mode is expected to be damped very rapidly in

computation.

The corresponding eigenfunctions of the physical and spurious modes are plotted in Figures 4.3 and 4.4

respectively. The eigenfunctions are constructed according to (3.21) using eigenvectors from (3.18) as the

expansion coe�cients. Plotted are eigenfunctions over a span of 30 elements, with the �rst element being

[-1,1] as indicated by dark lines in the plots. As shown in Figure 4.3, the physical mode travels to the right

and the amount of damping is quite visible for p = 1 and 2 with the chosen value of K = 2. The damping

error reduces signi�cantly as order increases.

In Figure 4.4, we see that the spurious non-physical mode is damped very rapidly for all cases shown,

which is consistent with our observation in Figure 4.2.

As will be shown later (equation (40)), the damping factor of the spurious mode is related to the value

of  as
���1�jj1+jj

���, plotted in Figure 4.5. Thus the spurious wave modes become highly damped when  is close

to unity and much less damped when  is close to zero or much greater than unity. In practice, small  is

avoided by choosing � � 1; large  occurs for slow wave modes where jajmax=aj is small.
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Fig. 4.1. The physical mode, numerical wave number khh v.s. actual wave number (normalized frequency) K =
!h
a
.

 = 0:5.

4.3. Super-accuracy of the numerical wave number. The numerical wave number Kh of the

physical mode should be a close approximation of the actual wave numberK, especially in the long wavelength

limit, i.e., when K is small. Here, we give an estimation on the order of convergence in wave number space

and show that Kh is accurate to the actual wave number K to order 2p + 2, which is twice the order of

accuracy of the basis functions.

Assuming jj 6= 1, we can re-write (4.2) as a quadratic equation for � as follows,

�2 �
�
H(iK)

G(iK)
+ (�1)p+1

1 + 

1� 

H(�iK)

G(iK)

�
�+ (�1)p+1

1 + 

1� 

G(�iK)

G(iK)
= 0:(4.3)

By examining the computed H(x) and G(x) functions (appendix A2), we found that the ratio H(x)=G(x)

10



Fig. 4.2. The spurious mode, numerical wave number khh v.s. actual wave number (normalized frequency) K =
!h
a
.

 = 0:5.

is always exactly the Pade approximation of ex to order 2p + 2. (This has been calculated and veri�ed

symbolically for p up to 16 and is conjectured to be true for all p.) That is, we have

H(x)

G(x)
= ex +O(x2p+2):(4.4)

Consequently, we can show that, for K small, the two roots of (4.3) are

�(p) = eiK + C1(iK)2p+2 + C2(iK)2p+3 + � � � (physical mode)(4.5)

and

11



Fig. 4.3. Eigen-functions of the physical mode. K = 2.  = 0:5. (a) p = 1, (b) p = 2, (c) p = 3, (d) p = 4.

�(s) = (�1)p+1
1 + 

1� 

G(�iK)

G(iK)
e�iK +D1(iK)2p+2 +D2(iK)2p+3 + � � � (non� physical mode)(4.6)

where C1, C2 and D1, D2 are real coe�cients, and dots represent higher order terms in (iK). A detailed

derivation is given in the appendix A3. Here the superscripts (p) and (s) indicate the physical and spurious

modes respectively.

12



Fig. 4.4. Eigen-functions of the spurious mode. K = 2.  = 0:5. (a) p = 1, (b) p = 2, (c) p = 3, (d) p = 4.

Thus, for the numerical wave number of the physical mode K
(p)
h , equation (4.5) gives

eiK
(p)

h = eiK + C1(iK)2p+2 + C2(iK)2p+3 + � � �

Therefore, we get the following order estimate

K
(p)
h = �i ln[eiK + C1(iK)2p+2 + C2(iK)2p+3 + � � �] = K � iC1(iK)2p+2 � iC 0

2(iK)2p+3 + � � �

13



Fig. 4.5. E�ects of  on the damping rate of the spurious mode.

= K + (�1)piC1K
2p+2 + (�1)p+1C 0

2K
2p+3 + � � �(4.7)

where C 0
2 is also a real coe�cient. Furthermore, by considering the real and imaginary parts of (4.7), we can

get an estimation on the convergence rates of the dispersion and dissipation errors. Speci�cally, we have

dispersion error : Re(K
(p)
h )�K = (�1)p+1C 0

2K
2p+3 + � � � ;(4.8)

dissipation error : Im(K
(p)
h ) = (�1)pC1K

2p+2 + � � � :(4.9)

That is, for DGM, the dominant error is the dissipation error which reduces locally at order 2p + 2. The

dispersion error, on the other hand, reduces locally at order 2p+ 3. This is con�rmed in Figure 4.6 where

the numerical dispersion relations shown in Figure 4.1 are re-plotted in log-log scale.

Note that when jj = 1, the spurious mode is non-existent and it is straightforward to verify directly

from (4.2) that (4.7)-(4.9) are still true for the physically accurate mode.

We also note that for polynomials H(x) and G(x) with given orders, (4.4) is the best possible order of

approximation. This suggests that (4.7) is the best asymptotic numerical dispersion relation possible.
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Fig. 4.6. Local order of convergence for the dispersion and dissipation errors of the physical mode. Circle: numerical

wave number computed by equation (4.2); solid line: theoretical convergence rate. (a) dispersion error; (b) dissipation error.

 = 0:5.

5. Wave re�ection at an interface of mesh discontinuity.

5.1. Re�ected and transmitted waves. In this section, we consider a situation where the size of

the element is abruptly changed from h1 to h2 across the interface between elements n = 0 and n = 1, as

shown in Figure 5.1. We will study the wave re�ection and transmission at the interface. Speci�cally, we will

introduce an incident physical wave, traveling from left to right, and look for the re�ected and transmitted

waves caused by the grid discontinuity.

Using the eigenfunction expression (3.20), we can express the incident wave as
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1 3

incident wave
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Element index n=

Fig. 5.1. A schematic of grid change.

uincident = A0e
�i!te

inK
(p)

h1 f
(p)
j0

(�;
!h1
aj0

; j0)ej0(5.1)

where A0 is the wave amplitude. Here ej0 denotes the eigenvector of a right-going wave mode of the PDE

(2.1), and K
(p)
h1;j0

and f
(p)
j0

(�; !h1aj0
; j0) are the numerical wave number and eigenfunction for that wave mode

found assuming a uniform mesh h1. In other words, (5.1) satis�es the time harmonic semi-discrete equation

(3.3) if �xn = h1 is held for all n. The superscript (p) in (5.1) denotes that the incident numerical mode is

a physical wave mode. Likewise, a superscript (s) will be used to denote the spurious modes.

Due to the discontinuity in mesh size, there will be re�ections at the interface. For convenience of

discussion, let ûnleft and û
n
right denote the time independent solutions in the left and right half-domains on

either side of the interface respectively. By making a use of (3.21), we get

ûnleft = A0e
inK

(p)

h1;j0 f
(p)
j0

(�;
!h1
aj0

; j0)ej0| {z }
incident

+ Are
inK

(s)

h1;j0 f
(s)
j0

(�;
!h1
aj0

; j0)ej0 +
X
j 6=j0

Bje
inK�

h1;jf�j (�;
!h1
aj

; j)ej

| {z }
re�ected

(5.2)

and

ûnright = Ate
inK

(p)

h2;j0 f
(p)
j0

(�;
!h2
aj0

; j0)ej0 +
X
j 6=j0

Aje
inK+

h2;jf+j (�;
!h2
aj

; j)ej

| {z }
transmitted

(5.3)

Here, Ar and At are amplitudes of the re�ected and transmitted waves associated with the ej0 wave and

Bj and Aj are those associated with the other waves of the PDE. The superscripts + and � in the terms

inside the summations of (5.2) and (5.3) denote the direction of propagation (right-traveling and left-traveling

respectively). It will be shown next, however, that all Bj and Aj are zero.
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5.2. Matching conditions at the interface. To derive matching conditions at the interface, we �rst

note that ûnleft and ûnright satisfy equation (3.3) for a uniform element size h1 and h2 respectively. The

coupling of the solutions can be found by applying (3.3) at the two adjacent elements near the interface of

the grid discontinuity, namely, at elements n = 0 and n = 1, Figure 5.1. Thus, from (3.3), we have

n = 0:

� i!h1
2

Z 1

�1

û0left(�) � P`0(�)d� +
�
ALû

0
left(1) +ARû

1
right(�1)

�
P`0(1)

�
h
ALû

�1
left(1) +ARû

0
left(�1)

i
P`0(�1)�

Z 1

�1

Aû0left(�)
@P`0

@�
d� = 0(5.4)

n = 1:

� i!h2
2

Z 1

�1

û1right(�) � P`0(�)d� +
�
ALû

1
right(1) +ARû

2
right(�1)

�
P`0(1)

� �ALû
0
left(1) +ARû

1
right(�1)

�
P`0(�1)�

Z 1

�1

Aû1right(�)
@P`0

@�
d� = 0(5.5)

These two conditions can be simpli�ed when we recognize the fact that (5.4) and (5.5) will still be true

when û1right(�1) in (5.4) is replaced by û1left(�1) and û0left(1) in (5.5) is replaced by û0right(1) due to the

reason stated at the beginning of the section. Consequently, the matching conditions (5.4) and (5.5) are

equivalent to the following two equations that are much more compact:

ARû
1
left(�1) = ARû

1
right(�1)(5.6)

and

ALû
0
left(1) = ALû

0
right(1)(5.7)

Now by substituting (5.2) and (5.3) into (5.6) and (5.7), and recalling (3.13), we easily get

A0e
iK

(p)

h1;j0 f
(p)
j0

(�1;
!h1
aj0

; j0)
1� j0

2
aj0ej0 +Are

iK
(s)

h1;j0 f
(s)
j0

(�1;
!h1
aj0

; j0)
1� j0

2
aj0ej0

+
X
j 6=j0

Bje
iK�

h1;jf�j (�1;
!h1
aj

; j)
1� j

2
ajej

= Ate
iK

(p)

h2;j0 f
(p)
j0

(�1;
!h2
aj0

; j0)
1� j0

2
aj0ej0 +

X
j 6=j0

Aje
iK+

h2;jf+j (�1;
!h2
aj

; j)
1� j

2
ajej(5.8)

and

A0
1 + j0

2
aj0ej0 +Ar

1 + j0
2

aj0ej0 +
X
j 6=j0

Bj
1 + j

2
ajej
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= At
1 + j0

2
aj0ej0 +

X
j 6=j0

Aj
1 + j

2
ajej:(5.9)

(In (5.9), we have used the fact that eigenfunctions are normalized such that f j�=1 = 1, as in (3.22).) Since

ej 's are linearly independent, it follows that

Bj = Aj = 0; j 6= j0:(5.10)

This means that no component of wave modes other than that of the incident mode ej0 will be present in

the re�ected and transmitted waves. This also suggests that the re�ected wave can only be in the form of

the spurious mode, the only opposite traveling numerical wave for the ej0 mode. An interesting consequence

of this is that when the exact characteristics splitting �ux formula is used, there will be no re�ected wave

because the opposite-traveling spurious wave is non-existent.

Further, by equaling the coe�cients of ej0 in (5.8) and (5.9), and assuming jj0 j 6= 1, we get two coupled

equations for Ar and At,

A0e
iK

(p)

h1;j0 f
(p)
j0

(�1;
!h1
aj0

; j0) +Are
iK

(s)

h1;j0 f
(s)
j0

(�1;
!h1
aj0

; j0) = Ate
iK

(p)

h2;j0 fj0(�1;
!h2
aj0

; j0);

A0 +Ar = At:

Solving the above, we get the following closed expressions for the re�ection and transmission coe�cients

Ar

A0
=

e
iK

(p)

h2;j0 f
(p)
j0

(�1; !h2aj0
; j0)� e

iK
(p)

h1;j0 f
(p)
j0

(�1; !h1aj0
; j0)

e
iK

(s)

h1;j0 f
(s)
j0

(�1; !h1aj0
; j0)� e

iK
(p)

h2;j0 f
(p)
j0

(�1; !h2aj0
; j0)

(5.11)

At

A0
=

e
iK

(s)

h1;j0 f
(s)
j0

(�1; !h1aj0
; j0)� e

iK
(p)

h1;j0 f
(p)
j0

(�1; !h1aj0
; j0)

e
iK

(s)

h1;j0 f
(s)
j0

(�1; !h1aj0
; j0)� e

iK
(p)

h2;j0 f
(p)
j0

(�1; !h2aj0
; j0)

(5.12)

Thus, numerical re�ection and transmission coe�cients are directly related to the change in dispersion

properties of the scheme when grid change occurs.

To express the above in a more compact and, perhaps, more insightful form, we note the fact that

numerical solutions in DGM have a small discontinuity (or gap) at the boundary of any two elements. This

discontinuity, of course, becomes diminished with the increase of the resolution of the scheme. Speci�cally,

if we let �h denote the discontinuity of the numerical solution at the interface of elements n = 0 and n = 1

had the grid size been uniformly h, then we have

�h = û1h(�1)� û0h(1) = eiKhf(�1;
!h

a
; )� 1

where unh(�) is the eigenfunction speci�ed in (3.21). Thus, in terms of �h, the expressions for the re�ection

and transmission coe�cients given in (5.11) and (5.12) can now be written as
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Fig. 5.2. Solid lines, boundaries of 2% numerical re�ection. Re�ected wave is less than 2% of the incident wave for

parameters above the curves.  = 0:5. Dashed lines, accuracy limits determined from the dispersion relation of a uniform grid

h2. The accuracy limit for p = 1 (not shown) is far above and out of the picture.

Ar

A0
=

�
(p)
h2
��

(p)
h1

�
(s)
h1
��

(p)
h2

(5.13)

At

A0
=

�
(s)
h1
��

(p)
h1

�
(s)
h1
��

(p)
h2

(5.14)

in which the superscript denotes the mode type, the physical (p) or spurious (s) mode, and the subscript

denotes the mesh spacing used for calculating the gap.

Equation (5.13) implies that numerical re�ection will be small for waves that are well resolved under the

grids on both sides of the interface, since the solution discontinuity decreases dramatically as the resolution

of the scheme increases. This is further illustrated in Figure 5.2 where regions that satisfy the requirement

on the resolution (number of elements per wavelength) so that the re�ection is 2% or less are plotted for

a given grid discontinuity of ratio h2=h1. A value of  = 0:5 is used in the calculations. The solid line is
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Fig. 5.3. Enlarged numerical phase (a) and damping (b) errors per wavelength of propagation for the physical mode. kh

is the numerical wave number and K is the exact wave number. r = e�2�Im(kkh)=K is the wave amplitude damping factor.

The dotted lines indicate the accuracy limits used in plotting Figure 5.2.

the 2% re�ection boundary for each given order of the scheme as indicated on the graph. As we can see,

when the ratio h2=h1 increases, the requirement on resolution also increases. It is interesting to compare

this requirement with the resolution requirement placed by the accuracy criteria of the scheme had the grid

been uniformly spaced. Since here we assume h2 > h1, the accuracy requirement will be calculated based on

h2. The accuracy boundaries are plotted in Figure 5.2 as dotted lines. The criteria used here consist of the

dispersion error 2� jRe(khh)�Kj
K < 0:001 and dissipation error 1 � e�2�Im(khh)=K < 0:001. This corresponds

to requiring that the phase and damping errors be less than 10% after a wave has been propagated 100

wavelengths. Enlarged numerical dispersion relations are plotted in Figure 5.3 where the accuracy limits

used are shown as dotted lines. Figure 5.3 indicates that the uniform grid accuracy constraint is similar

to, and in many cases more stringent than, the accuracy constraint due to the abrupt change in mesh size.

Although the uniform grid and discontinuous grid error criteria used here are somewhat arbitrary, we use

Figure 5.2 to emphasize the notion that both types of errors follow parallel trends with respect to varying

mesh sizes and the increase of the resolution of a scheme leads to the reduction of numerical re�ection caused

by a grid discontinuity.
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Fig. 6.1. Propagation of a periodic sine wave. The di�erence of the solutions at two periods shown in dark lines are

computed in Table 6.1.

6. Numerical examples. In this section, we present numerical examples that illustrate and verify the

wave propagation properties found in this paper.

6.1. Super-accuracy of wave propagation. We solve the linearized Euler equations with constant

mean �ow in 1-D:

@u

@t
+M

@u

@x
+
@p

@x
= 0(6.1)

@p

@t
+M

@p

@x
+
@u

@x
= 0(6.2)

where M is the mean �ow Mach number, u is the velocity and p is the pressure. The Jacobian matrix has

eigenvaluesM�1 andM+1, which represent the acoustic wave modes. We use Legendre polynomials as basis

functions in our calculation. The semi-discrete equation is solved by an optimized 4th-order Runge-Kutta

scheme (LDDRK56 in [10]).

To verify the accuracy of spatial propagation, we consider a computational domain of [0; 100] and intro-

duce an incoming wave

"
uin

pin

#
= sin[!0(x � t)]

"
1

1

#
(6.3)

at the left boundary x = 0: The frequency is chosen to be !0 = �=2 with a wavelength �0 = 4 in a mean

�ow M = 0. At the right boundary x = 100, we implement the characteristics boundary condition, i.e., the

exact characteristics �ux formula ( = 1) is used at the right boundary of the last element. After the initial

transient has exited the right boundary, the computational domain is �lled with the sine wave. We then

21



Table 6.1

Solution of (6.1)-(6.2), M = 0, using uniform grids. Error is calculated by (6.4).

 = 1  = 0:5

p h Error E order Error E order

1 1:74054 - 1:79386 -

1 0:5 1:09166 0:6730 1:46813 0:2890

0:25 0:197915 2:4635 0:344971 2:0894

0:125 0:0261657 2:9191 0:0506057 2:7691

1 0:27629 - 0:286715 -

2 0:5 0:010116 4:7714 0:00634575 5:4976

0:25 0:000323692 4:9658 0:000172082 5:2053

0:125 0:1016� 10�4 4:9923 0:5165� 10�6 5:0574

1 0:00386958 - 0:00381781 -

3 0:5 0:3217� 10�4 6:9102 0:4912� 10�4 6:2801

0:25 0:2552� 10�6 6:9780 0:4709� 10�6 6:7048

0:125 0:2019� 10�8 6:9812 0:3964� 10�8 6:8919

2 0:0126055 - 0:0238191 -

4 1 0:3002� 10�4 8:7137 0:3034� 10�4 9:6164

0:5 0:6153� 10�7 8:9305 0:3858� 10�7 9:6192

compare the numerical solutions at the �rst period near x = 0 with that of the 20th period, noted by dark

lines in Figure 6.1. Speci�cally, we measure the error according to pressure p as:

E =

sZ �0

0

jph(x; t)� ph(x+ 20�0; t)j2 dx

=

vuuth

2

n0�1X
n=0

Z 1

�1

��pnh(�; t)� pn+20n0h (�; t)
��2 d�(6.4)

where n is the element index and n0 = �0
h . Table 6.1 shows the mesh re�nement results for p = 1 to 4.

Since the local dispersion relation is accurate to order 2p + 2, the global error measure E de�ned in (6.4)

will decrease at order 2p+ 1. This is observed in all the cases.

6.2. Re�ection at grid discontinuity and comparison with eigenfunctions. In Figures 6.2 to

6.3, we show the propagation of the sine wave (6.3) through a mesh discontinuity. Since the numerical wave

re�ection properties are dependent on the �ux formula used, we will show cases with the exact as well as

inexact characteristics �ux formulas. This will be indicated by the value of  used in the computation. A value

of jj = 1 indicates exact characteristics splitting while a value of jj 6= 1 indicates inexact characteristics

�ux. In some calculations, a fairly large grid discontinuity has been used. This is to make re�ection errors

more visible for the purpose of illustration. In all the calculations, a �fth-order (p = 4) scheme is used.

6.2.1. Exact characteristics �ux formula jj = 1. In Figures 6.2(a) and (b), a grid discontinuity

is introduced at x = 50 with the ratio of grid spacing being 2 and 5 respectively. The exact characteristics-
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Fig. 6.2. Propagation of a periodic sine wave through a grid discontinuity at x = 50. M = 0,  = 1 (exact characteristics

�ux). + indicates grid points. (a) h1 = 1, h2 = 2; (b) h1 = 1, h2 = 5.

based �ux formula is used in this example with � = 1. In both cases, the abrupt change of element size causes

no numerical re�ection because the opposite-traveling spurious mode is now non-existent. The damping of

wave amplitude in the coarsened grid is due to the reduction in resolution and is expected.

6.2.2. A slow wave mode jj = 10. In Figure 6.3(a), we show the solution for a case in which  is

large ( = 10). This situation is likely to occur when the wave speed of an eigenmode is small relative to

the fastest eigenmode governed by a given system of equations. In Figure 6.3(a), the amount of re�ection

is visible since the grid ratio here is quite large. By subtracting out a calculation with uniform grids (done

separately), the re�ected wave is extracted and plotted in Figure 6.3(b). Inspecting visually, the re�ected

wave is in the form of the spurious numerical mode. This will be further con�rmed when we compare the

numerical solution with the eigenfunction formed in (3.20).

To compare the numerical solution with the eigenfunctions found in section 4, we �rst extract the

complex coe�cient vector from the numerical solution by constructing

v = vjt=t0 + ivjt=t0+T
4

in each element. In the above, T is the period of the sine wave and t0 is an arbitrary time at which the

numerical solution has become time periodic and v denotes the solution coe�cient vector of the pressure p.

Then, we �t this coe�cient vector by a linear combination of the eigenvectors of (3.18). Speci�cally, suppose

the eigenvectors of (3.18) are denoted by v(p) and v(s) for the physical and spurious modes, we try to �nd

a and b such that
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v = av(p) + bv(s)(6.5)

The coe�cients a and b are computed by requiring (6.5) be orthogonal to v(p) and v(s). In other words,

we �decompose� the numerical solution into eigen-modes. This is done for every element and the residues

of (6.5) have been found to be near machine zero in all cases. The magnitudes of a and b plotted in Figure

6.3(c). Here, circles indicate the magnitude of the physical mode, jaj, and the triangles the spurious mode,

jbj. The re�ection at the interface at x = 50 and their subsequent exponential decay are clearly shown. Also

shown, in dotted lines, are the predictions of the re�ected and transmitted waves with their amplitudes at

the interface being determined by (5.13) and (5.14). Excellent agreements are found.

6.3. Propagation of an acoustic pulse with mean �ow. In the third example, Figure 6.4, we show

the propagation of an acoustic pulse in a mean �ow of Mach numberM = 0:8. We solve (6.1)-(6.2) using the

Lax-Friedrich formula (2.9) with � = 1. The initial Gaussian pro�le in the u velocity component is separated

into a downstream propagating pulse, with speed M + 1, and an upstream propagating pulse, with speed

M � 1. Both pulses are to propagate through a grid discontinuity of ratio h2=h1 = 5 located at x = 30

and x = �30 respectively. The di�erence in wave propagation speed results in two di�erent upwind factors

 for the two pulses, namely,  = 1 for the downstream propagating pulse and  = �9 for the upstream

propagating pulse according to (3.15) and (3.16). For the right-traveling pulse, since the �ux formula is the

exact characteristics splitting, no re�ection occurs as the pulse propagates through the grid discontinuity.

For the left-traveling pulse, small re�ected waves are detected due to the inexact characteristics �ux formula

for that wave speed. We note that the re�ected waves are in the form of spurious waves and decay rapidly.

We emphasize that the use of a relatively large abrupt increase in grid size is to make the re�ections more

visible. Indeed, a calculation using a grid ratio of 2 produced much smaller re�ected waves.

7. Conclusions. We have carried out a detailed study of spatially propagating waves in a discontinuous

Galerkin scheme applied to a system of linear hyperbolic equations. An eigenvalue problem for the spatially

propagating waves is formulated. In one dimensional space, the eigenvalue problem reduces to a quadratic

equation and, consequently, yields at most two numerical wave modes for each physical wave mode of the

partial di�erential equations. One is physically signi�cant with the dispersion error that decays like h2p+3

and the dissipation error that decays like h2p+2 locally. The other numerical mode is spurious. The spurious

mode becomes non-existent when the exact characteristics splitting �ux formula is used. Furthermore,

re�ection and transmission coe�cients of an incident wave at an interface of grid discontinuity are derived.

It is shown that numerical re�ection error consists of only the spurious mode and its magnitude depends

on the spatial resolution of the grids on both sides of the interface. Theoretical predictions are veri�ed

with numerical examples. These predictions should bene�t the design and application of the DGM scheme

with non-uniform grids. In a forthcoming paper, we will examine the e�ects of grid discontinuity in two-

dimensional space.
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Fig. 6.3. (a) Propagation of a sine wave through a grid discontinuity, h2=h1 = 5,  = 10. (b) Re�ected wave. (c)

Decomposition of numerical solution into physical and spurious modes. circles, physical mode; triangles, spurious mode;

dashed lines, theoretical predictions of (5.13)-(5.14).
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Fig. 6.4. Propagation of an acoustic pulse in a mean �ow of M = 0:8, using Lax-Friedrich �ux formula (2.9) with � = 1.

Inserts indicate magni�ed ranges of interest.
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Appendix.

A1. Kronecker product. Let A = f�ijgl�k and B = f�ijgn�m. The Kronecker product is de�ned as

A
B =

2
66664

�11B �12B ::: �1kB

�21B �22B ::: �2kB

::: ::: ::: :::

�l1B �l2B ::: �lkB

3
77775
ln�km

(7.1)

It is easy to verify by direct calculation that for any matrices A, B and vectors x, y, we have

(A
B)(x
 y) = (Ax)
 (By)(7.2)

A2. Polynomials G(x) and H(x). Polynomials G(x) and H(x) appeared in (4.2):

G(x) H(x)

p = 1 1� 1
3x 1 + 2

3x+ 1
6x

2

p = 2 1� 2
5x+ 1

20x
2 1 + 3

5x+ 3
20x

2 + 1
60x

3

p = 3 1� 3
7x+ 1

14x
2 � 1

200x
3 1 + 4

7x+ 1
7x

2 + 2
105x

3 + 1
840x

4

p = 4 1� 4
9x+ 1

12x
2 � 1

126x
3 + 1

3024x
4 1 + 5

9x+ 5
36x

2 + 5
252x

3 + 5
3024x

4 + 1
15120x

5

p = 5 1� 5
11x+ 1

11x
2 � 1

99x
3 + 1

1584x
4 � 1

55440x
5 1 + 6

11x+ 3
22x

2 + 2
99x

3 + 1
528x

4 + 1
9240x

5 + 1
332640x

6

It is straightforward to verify that H(x)=G(x) is exactly the Pade approximation of ex to order 2p+ 2.

This has been con�rmed up to p = 16 and is conjectured to be true for all p.

A3. Accuracy of eigenvalues. In this appendix, we give a derivation of (4.5) and (4.6). We need

only to consider the cases when jj 6= 1. The case for jj = 1 follows trivially from (4.2).

For convenience of discussion, de�ne

� = (�1)p+1
1 + 

1� 
:

Then, equation (4.3) becomes

�2 �
�
H(iK)

G(iK)
+ �

H(�iK)

G(iK)

�
�+ �

G(�iK)

G(iK)
= 0:(7.3)

Let the two roots of (7.3) be denoted by �(p) and �(s) with their values at K = 0 as follows,

at K = 0; �(p) = 1 and �(s) = �:

Now consider an auxiliary quadratic equation:

�2 �
�
eiK + �e�iK

G(�iK)

G(iK)

�
� + �

G(�iK)

G(iK)
= 0:(7.4)

28



The two roots of (7.4) are easily found to be

�(p) = eiK and �(s) = �e�iK
G(�iK)

G(iK)
:

By subtracting (7.4) from (7.3), we get

�2 � �2 �
�
H(iK)

G(iK)
+ �

H(�iK)

G(iK)

�
�+

�
eiK + �e�iK

G(�iK)

G(iK)

�
� = 0:(7.5)

By the results of Appendix A2, we have

H(iK)

G(iK)
= eiK +R(iK)

and

H(�iK)

G(iK)
=

H(�iK)

G(�iK)

G(�iK)

G(iK)
=
�
e�iK +R(�iK)

� G(�iK)

G(iK)

= e�iK
G(�iK)

G(iK)
+R(�iK)

G(�iK)

G(iK)

where R(x) is an O(x2p+2) function with real coe�cients. Then equation (7.5) can be written as

�2 � �2 �
�
eiK + �e�iK

G(�iK)

G(iK)

�
(�� �) =

�
R(iK) + �R(�iK)

G(�iK)

G(iK)

�
�:(7.6)

For simplicity, let's de�ne

A(iK) = eiK + �e�iK
G(�iK)

G(iK)
;

B(iK) = R(iK) + �R(�iK)
G(�iK)

G(iK)
;

and rewrite (7.6) as

(�� �) [�+ � �A(iK)] = B(iK)�:(7.7)

It is straightforward to verify that, as K ! 0, we have

A(iK) = [1 + �] + �1(iK) + �2(iK)2 + � � �(7.8)

B(iK) = [1 + �] �1(iK)2p+2 + �2(iK)2p+3 + � � �(7.9)

and

�(p) + �(p) �A(iK) = [1� �] + �01(iK) + �02(iK)2 + � � �(7.10)
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�(s) + �(s) �A(iK) = [� � 1] + �001(iK) + �002 (iK)2 + � � �(7.11)

where all the coe�cients on the right hand sides are real and the dots represent higher order terms in (iK)

with real coe�cients.

Therefore,

(i) if � 6= �1, it follows easily from (7.7) that

�(p) � �(p) =
[1 + �]

[1� �]
�1(iK)2p+2 + � � �(7.12)

and

�(s) � �(s) =
[1 + �]

[� � 1]
��1(iK)2p+2 + � � �(7.13)

This immediately leads to (4.5) and (4.6).

(ii) if � = 1, then, instead of (7.10) and (7.11), we have

�(p) + �(p) �A(iK) = �01(iK) + �02(iK)2 + � � �

�(s) + �(s) �A(iK) = �001(iK) + �002(iK)2 + � � �

which gives

�(p) � �(p) =
2

�01
�1(iK)2p+1 + � � �

and

�(s) � �(s) =
2

�001
��1(iK)2p+1 + � � �

This is one order lower than that of case (i).

(iii) if � = �1, then, instead of (7.9), we have

B(iK) = �2(iK)2p+3 + � � �

and it follows from (7.7) that

�(p) � �(p) =
1

2
�2(iK)2p+3 + � � �

and

�(s) � �(s) = �1

2
�2(iK)2p+3 + � � �

This is one order higher than that of case (ii).

We note, however, that (ii) or (iii) is possible only if  = 0 or  = 1. Both are not very practical

situations.
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